Time series irreversibility: a visibility graph approach
نویسندگان
چکیده
We propose a method to measure real-valued time series irreversibility which combines two different tools: the horizontal visibility algorithm and the Kullback-Leibler divergence. This method maps a time series to a directed network according to a geometric criterion. The degree of irreversibility of the series is then estimated by the Kullback-Leibler divergence (i.e. the distinguishability) between the in and out degree distributions of the associated graph. The method is computationally efficient and does not require any ad hoc symbolization process. We find that the method correctly distinguishes between reversible and irreversible stationary time series, including analytical and numerical studies of its performance for: (i) reversible stochastic processes (uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic processes (a discrete flashing ratchet in an asymmetric potential), (iii) reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv) dissipative chaotic maps in the presence of noise. Two alternative graph functionals, the degree and the degree-degree distributions, can be used as the Kullback-Leibler divergence argument. The former is simpler and more intuitive and can be used as a benchmark, but in the case of an irreversible process with null net current, the degree-degree distribution has to be considered to identify the irreversible nature of the series.
منابع مشابه
OFFPRINT Testing time series irreversibility using complex network methods
The absence of time-reversal symmetry is a fundamental property of many nonlinear time series. Here, we propose a new set of statistical tests for time series irreversibility based on standard and horizontal visibility graphs. Specifically, we statistically compare the distributions of time-directed variants of the common complex network measures degree and local clustering coefficient. Our app...
متن کاملMapping Time Series to Networks: a Brief Overview of Visibility Algorithms
In the last years a new approach for making time series analysis has appeared. This new approach considers the mapping of time series to networks, in order to characterize the structure of time series (and therefore the dynamics that generated the series) via characterization of the associated network. It makes use of several metrics recently developed in the so called Complex Network theory, a...
متن کاملCoupling between time series: a network view
Recently, the visibility graph has been introduced as a novel view for analyzing time series, which maps it to a complex network. In this paper, we introduce a new algorithm of visibility, ”cross-visibility”, which reveals the conjugation of two coupled time series. The correspondence between the two time series is mapped to a network, ”the cross-visibility graph”, to demonstrate the correlatio...
متن کاملA Visibility Graph Averaging Aggregation Operator
The problem of aggregation is considerable importance in many disciplines. In this paper, a new type of operator called visibility graph averaging (VGA) aggregation operator is proposed. This proposed operator is based on the visibility graph which can convert a time series into a graph. The weights are obtained according to the importance of the data in the visibility graph. Finally, the VGA o...
متن کاملDetecting Series Periodicity with Horizontal Visibility Graphs
The horizontal visibility algorithm was recently introduced as a mapping between time series and networks. The challenge lies in characterizing the structure of time series (and the processes that generated those series) using the powerful tools of graph theory. Recent works have shown that the visibility graphs inherit several degrees of correlations from their associated series, and therefore...
متن کامل